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Abstract— This paper presents a way to integrate an industrial 

robot into Internet of Things and to use it with a deep learning 

application. Besides of manufacturer’s restrictions, which usually 

exist in an industrial scenario, an easy method to extend and merge 

the sensorial and decisional systems for robots will be required as 

part of Industry 4.0. Related to this, the proposed method couples 

IBM Watson IoT cloud-based platform, a Node-RED cloud 

application, a deep learning mechanism with TensorFlow (this 

being applied for a computer vision case study), and an old 

generation industrial robot. Several conclusions highlight the trade-

off of using IoT and deep learning solutions for a real 

manufacturing environment. 
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I. INTRODUCTION 

Nowadays industrial applications are in continuous renewal 
and between the technologies being involved  one can 
frequently note Internet of Things (IoT) [1], [2], deep 
learning [3], cloud computing [4], computer vision systems, 
and sensor networks. A common use of deep learning for 
solving industrial tasks is to couple this method with 
computer vision techniques [3]. This is the approach 
considered in this paper, too. Though IoT is in its beginning 
stage of industrial adoption, it is already valuable for testing 
and validation of new functional modules. This is the case 
treated in this research, which had two main goals: to 
develop and test a deep learning module being linked to a 
computer vision system, and to establish an interface for an 
industrial robot based on IoT that should allow the 
connection to cloud infrastructure.  

 There are many researches in the IoT field. It is to notice 
that the application of this paradigm in an industrial 
environment determines many specific issues, so that now 
the distinction is made through the notion of Industrial 
Internet of Things (IIoT) [2], [5]. The overview presented in 
[2] highlights the problems regarding connectivity in IIOT 
and also the challenges for this solution. Besides the benefits 
obtained with this new technology, the problems regarding 
the security requirements must be discussed, too. In [5], the 
underlined advantages of IIOT regard the way precision 
machining can be achieved by the use of embedded sensors 
and intelligent algorithms that can detect, in real time, 
deviations from nominal values during the manufacturing 
processes. A new paradigm is applied in [6], namely the so-

called edge computing, which means that computation is 
done as much as possible close to the sensorial part and only 
preprocessed information is transferred towards cloud 
services. In this way, the obtained advantage is about 
reducing communication load. This is a significant issue, due 
to the great volume of data determined by sensors, resources 
and products with embedded intelligence.  

 Starting from the common case of robotic systems, which 
operate in repetitive cycles with reduced adaptability (as it is 
the case of the robotic environment we used in our previous 
experiments [7]), the purpose was to extend the sensorial and 
decisional subsystems. Having this in mind, our objective 
was to get an entire system of the type “see, decide and act”, 
which should be similar to the principles of agent-based 
systems. In order to validate the proposed approach and 
understand its specific issues, the problem of recognizing 
digits from zero to nine in a real environment was adopted; it 
has the advantage that some results regarding it exist in the 
literature [8]. Image processing and the trained neuronal 
network have great importance in this case, as well as the 
light, shadows and camera specifications. The main issues 
introduced through this paper refer to the connection of an 
industrial robot with a deep learning module using an IoT 
cloud platform, the comparison of learning performances 
involved in the object recognition scenario, and utilization of 
some image processing strategies based on OpenCV [9] to 
improve the recognized rate.  

 One way to apply deep learning is by means of 
TensorFlow; this is an open source software library used for 
numerical computation [10]. It was developed by engineers 
at Google Brain to explore deep neural networks and 
machine learning. The tool is flexible and can express a wide 
variety of algorithms, such as learning and deduction 
schemes for deep neural networks. It supports both Python 
and C++ languages. The Python API is more extended and 
its main advantage regards the way it can run on multiple 
CPUs and GPUs. To view the created model we can use a 
web platform called TensorBoard [11]. This allows us to 
inspect the graph of neural network; one can track the 
evolution of a tensor (a set of values organized in a 
multidimensional array) over time through a histogram and 
can graphically represent different desired characteristics, 
such as the accuracy of model. 

This paper is organized as follows. First, a solution to 
integrate an industrial robot into an IoT cloud-based platform  
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is presented. After illustrating a simple cloud application 
devoted to monitoring and controlling the robot, a deep 
learning application is explained. The paper ends with some 
results and conclusions.  

II. IOT SOLUTION FOR A ROBOTIZED CELL 

A. Motivation and the used manufacturing cell 

 In order to extend the sensorial and decisional 
subsystems as needed for the object recognition scenario, a 
solution is required to easily integrate and establish the 
communication between a data acquisition application, a 
processing system, a learning module, decisional and 
execution parts. The used manufacturing environment is 
presented in Fig. 1 and includes: (1) HD webcam system 
linked to (2) image processing application (described in 
Section III) running on a laptop with an Intel Core i5-5200 
processor, (3) a driver application running on a modest 
computer that is connected to the SC4-plus controller for (4) 
the robot IRB2400L. 

Previously, we proposed a solution for the external 
interaction with an ABB robot controller used in several 
research  projects [7],  [12],  [13]. Each time  the  main effort 

 

1
2

4
3

 

Fig. 1. Manufacturing environment used with the IoT application 

was to facilitate custom communication with other 
applications, such as Matlab, Java, Python and C++, through 
local and private networks.  Other researchers have adopted 
the Robot Operating System (ROS) for their robots in order 
to interact with them [14]. This approach requires certain 
options to be installed on the robot controller, some of them 
being not compatible with older versions of robot controllers. 
That is why this method is not applicable for our robot. A 
proposed interaction method between (2) and (3) is obtained 
via Watson IoT platform [15] without any local connection. 

B. IoT system architecture 

 The IoT communication solution is based on publish/ 
subscribe patterns, using a broker service and the MQTT 
protocol over TCP/IP. Two primary types of actors are in the 
system. IoT devices are embedded systems able to publish 
their states/events and receive commands within existing 
internet infrastructure through MQTT. IoT applications are 
developed to receive device/devices information and to 
optionally publish commands toward devices. The 
interaction between IoT actors is carried out by the broker 
service. When a device publishes something with a topic, the 
broker forwards the message to all applications registered to 
that topic. Similarly, a command is transmitted through the 
broker from an application to a specific device having the 
command registered. This architecture is illustrated in the 
bottom part of Fig. 2. In our solution, the IBM cloud 
infrastructure is used: Watson IoT as the broker service and 
Node-RED as IoT cloud application for testing. IoT 
integration of industrial equipment involves some 
manufacturing constraints. Even if some devices are 
connected to a local network, external interaction is limited 
by the installed software (no support for MQTT protocol) 
and/or by the private protocol provided by the manufacturer. 
In our case, the SC4 plus robot controller has only one 
solution supported by ABB, namely the Interlink service [16] 
working with the Robot Application Protocol (RAP) [17]. 
This service is pulling the controller (> 200 ms) in order to 
get states of controller, I/O channels, robot arm pose and 
persistent variables of running program. It also supports several 
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Fig. 2. IoT architecture including an industrial robot 
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commands: copy, load Rapid programs and run procedures, 
change the persistent variables and the output channels. 
Interlink service can be only used with a constrained 
WebWare SDK [16]; this is developed for Windows, 
supports Visual Basic and C#, needs window form 
application, and has no further supports.  

 The above issue is present to all industrial devices. For 
instance, in the case of our educational manufacturing cell 
[7], similar constraints appear for the machine tool, conveyor 
and computer vision system. Our solution involved the 
implementation of IoT device client to bridge the 
communication in both ways: publishing the robot’s 
status/events and receiving and forwarding commands to the 
controller (see Fig. 2). This client has to be on the same 
computer with the interlink service and it must have access 
to the robot network and internet.  

 In order to gather robot information, we defined several 
topics for states: controller, program, motors, I/O, robot pose 
and customer program variables. These are persistent 
variables, being defined in the developed program loaded on 
the robot. The states are changed by the Interlink service 
when events are triggered, meaning that the IoT client is 
connected to that events. For example, when the motion of 
the robot is monitored, the IoT device is pulling the 
controller and publishing pose data under the JSON format 
(1) with the current_pose topic. The structure of data that 
store a pose of any ABB robot is robtarget (2), where [x, y, 
z] is the position of tool’s reference frame, and [q0, q1, q2, 
q3] is the orientation given as quaternion. 

{‘x’ = …, ‘y’ =…, ‘z’ =…, 

’q0’=…,’q1’=…,’q2’=…,’q4’=….}   (1) 

robtarget p1 = [[x,y,z], [q0,q1,q2,q3],…]  (2) 

 Regarding the transmission of commands towards robot, 
the IoT client has to publish the command with a type and 
several parameters. We defined three command types: for 

controller (on/off motors), for analogical and digital output 
signals, and for programs (meaning the change of persistent 
variables and run of procedures). For example, in order to 
move the robot in a given position, the client application has 
to publish a move_to command with parameters for the final 
position (x, y, z). The command is received by the IoT robot 
device; first, persistent variables indicated in received 
parameters are updated on the robot controller and then the 
corresponding procedure is carried out. About this, it is 
important how persistent variables are chosen, so that to be 
appropriate for the procedure to be run on robot controller.  

C. A simple IoT cloud application 

 Once the robot was integrated in IoT platform, it is 
accessible for monitoring and control from the cloud 
applications and also from other computers. In Fig. 3 a 
cloud-based application with the Node-RED tool is 
presented. The first goal was to monitor the robot motion and 
to plot the robot positions. Thus, it is used an input node for 
Watson IoT platform in order to receive events sent from 
robot with the current position, and three chart nodes to plot 
x, y and z axes. Figure 4 illustrates the data plotted in real-
time when the robot made three repetitive tasks; the sampling 
period was set to 200 ms. 

 

Fig. 3. Node-RED cloud application for monitoring and controlling an 

industrial robot 

 

 

Fig. 4. Monitoring the robot motion:  x, y, z axes 
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 The second goal implied to send some commands, such 
as close/open the gripper and to move to a given position. 
For this, three output nodes are involved to publish 
commands toward IoT platform and three input nodes are 
acting as buttons. Furthermore, these three commands need 
to be previously registered by the IoT device and 
implemented consistently with the robot program. Codes 1 
and 2 show the developed programs for the robot (using the 
Rapid language, the one devoted to ABB robots [18]) and the 
needed IoT device. When the MoveToXYZ command is 
received by IoT device, the persistent variables are updated 
and after that the corresponding procedure is executed. 

Code 1.  Example of robot program for customer commands 

1. 

2. 

3. 

4. 
5. 

6. 

7. 
8. 

9. 

10. 
11. 

12 

PERS num x:=0, y:=0, z:=0; // external changeable variables 

PROC MoveToXYZ() 
   ConfL\Off; 

    MoveL Offs(P10_Ref, x, y, z),v200,fine,Efector; 
   ConfL\On; 
ENDPROC 

PROC OpenGripper() 
      WaitTime 0.2; 

      Set DO11_7; 

      Reset DO11_8; 
      WaitTime 0.2; 

ENDPROC 

  

Code 2.  Example of  IoT robot device code for customer commands 

1 

2 

3 
4 

5 

6 
7 

5 

6 

public void processCmd(string cmd, string format, string data){ 
  if (cmd.Equals("OpenGripper")) 
             AbbControler.RunRapidProcedure(robot, cmd); 
  if (cmd.Equals("MoveToXYZ")){ 

          JObject msg = JObject.Parse(data); 
          AbbControler.SetRapidVar(robot, "x", msg.GetValue("x")); 
          AbbControler.SetRapidVar(robot, "y", msg.GetValue("y")); 
          AbbControler.SetRapidVar(robot, "z", msg.GetValue("z")); 
          AbbControler.RunRapidProcedure(robot, cmd);}} 

III. DEEP LEARNIG BASED OBJECT RECONGNITION 

The considered robotized application applying Deep 
learning has as scenario the carrying out of certain tasks by 
an industrial robot in accordance with images received as 
input data. Thus, the operator writes a number from zero to 
nine on a paper, and the robot reacts by making one task 
from a set of ten jobs in our experiments, the robot’s tasks 
were to write the presented number (see Fig. 1). The scenario 
can be extended to more complex tasks; one issue is about 
collecting the dataset to properly train a neural network. 

IoT client
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Python application

IBM cloud

 IoT platform

IoT client

Industrial robot
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Fig. 5. IoT based architecture  

The IoT based architecture is presented in Fig. 5. This is 
an instance of Fig. 2, where the processing and decisional 
part is an IoT application and the IoT robot device achieves 
the connection with the industrial robot. Data acquisition is 
performed using a webcam, images being transmitted via 
USB. The decision-making system (IoT application) is 
developed in Python; it consists of the image processing with 
the OpenCV library and a recognition algorithm that uses the 
TensorFlow library. 

A. The considered learning process 

To be able to recognize the transmitted images, first, the 
system must be trained with the learning dataset. Three 
activation functions were considered to train the deep neural 
network by TensorFlow: Softmax, Sigmoid, and ReLU. Each 
of these brought different performance. The Softmax function 
calculates the probability of each target class over all 
possible target classes; in our case there are ten possible 
classes. The Sigmoid function is used in binary classification 
and is nonlinear. The ReLU (Rectified Linear Unit) is 
inspired by biology and it is defined as the positive part of its 
argument (3): 

 f(z) = max(0,z)      (3) 

where z is the input variable of neuron. This function 
provided a better learning of deep neural network than 
Softmax and Sigmoid functions, as shown in the next section.  

As a first phase, the learning process used an MNIST 

(Modified National Institute of Standards and Technology) 

[19] digit dataset divided into three categories: 55.000 items 

of learning data, 10.000 test data and 5.000 validation data. 

Each image is binary, with a size of 28x28 and has 

associated a tag with the number from the picture (see Fig. 

6). The MNIST dataset was useful, allowing us to determine 

the best recognition percentage for each activation function 

applied by the developed program. One must take into 

account that the quality of images from the dataset greatly 

influences the accuracy of the learning process. This 

determines the need for real captured image to be 

appropriately processed, considering light, shadows, camera 

pose, and camera specifications. 
 

 
Fig. 6. Digits representation in the MNIST dataset [19] 

About this, image acquisition and processing are made 

with OpenCV. Figure 7 illustrates the processing steps for a 

captured image: gray scaling, thresholding, dilatation, 

centralize and resize. The reasons of these steps are 

highlighted in the next section. 
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a) b) c) 

d) e) 

 
Fig. 7. a) original image b) conversion to grayscale c) thresholding d) 

dilatation  e) centralize and resize 

B. Performance analysis 

The considered activation functions and processing steps 
influence the quality of recognition. In this investigation, the 
validation data are captured from the web camera and 
MNIST validation data are no longer used. For each digit, 
three different images are used (thus, our set includes 30 
images) considering the influence of writing instrument, 
light, angle and quality. Figure 8 shows the considered 
samples for the digit 8. Moreover, the image processing 
includes only resizing and thresholding (see Fig. 9). 

When the Softmax function was used, the TensorFlow 
built a neural network with a single layer of neurons and the 
percentage of recognition was up to 60% (when MNIST data 
validation are used, recognition percentage is up to 92%). As 
Fig. 9 shows, the quality of image processing is low. We can 
conclude that the difference in recognition of 30% appearing 
between the real data and that from MNIST (see Table I) is 
closely related to how image is processed. The Table I shows 
in the last  row which  digits are partial  recognized (a bolded 

 

Fig. 8. Examples of images with digit 8 

and underlined value is one being incorrectly recognized). 
For instance, the digits 7, 8 and 9 are not recognized at all. 

 By considering the Sigmoid function, a neural network 
with five layers of neurons was built. The first layer has 10 
neurons and this number is progressively increased to the 
fifth layer with 200 neurons. On the same sample of 30 
images, the percentage of recognized images reaches 70% 
for those being captured by the camera and up to 95% for the 
MNIST validation set. Table I shows that more digits are 
recognized in each input set (at least one digit from each set). 
When ReLU function was used, recognition percentage 
increased to 83% for our images and to 96% for MNIST 
dataset.  

 To improve the recognition percentage for all three 
activation functions, one had to increase the quality of image 
processing. Images of digits from Fig. 9 differ a lot from 
those of Fig. 7, due to the weak contrast between the sheet 
and the drawn number; only simple binarization does not 
bring the image to the needed quality. Furthermore, image 
dilatation is introduced to enlarge the bright regions; it also 
shrinks the dark regions to join the broken areas of the 
number. There is a morphological closure that removes the 
remaining dark colored spots and connects small carpets so 
that dark gaps between the bright ones "close". Another 
change in processing lies in the fact that image resizing at 
28x28 takes place at the end of the process and not at the 
beginning; this was done because it was seen from the tests 
that resizing before binarization, dilatation, and centering 
reduce image quality. After these improvements, better 
results were obtained as presented in Fig. 10 (to be compared 
with those of Fig.9). 

 With these changes in image processing, we ran the 
model again using the ReLU function, and we could see that 
the percentage of recognition exceeds 90% (see Table I, the 
ReLU 2 column). 

 

Fig. 9. Results of resizing and thresholding the image from Fig. 8 

TABLE I.  LEARNING PERFORMANCE USING THREE ACTIVATION FUNCTIONS 

Performance Softmax Sigmoid ReLU ReLU 2 

MNIST image recognition 92% 95% 98% 98% 

Real image recognition 53% - 60% 70% 83% 90% 

[img1 img2 img3] with/  
without recognized values 

imgi – input image   

[0 0 0]      [2 1 1] 

[2 2 2]      [3 6 1] 

[4 6 4]      [5 5 5] 

[8 6 6]      [2 2 2] 

[1 2 9]      [3 3 3] 

[0 0 0]       [3 5 1] 

[2 2 2]       [3 3 1] 

[4 4 9]       [5 5 5] 

[8 6 6]       [2 7 7] 

[8 8 9]       [3 2 9] 

[0 0 0]       [1 1 1] 

[2 2 2]       [3 3 3] 

[4 4 4]       [5 5 5] 

[8 6 6]       [2 7 2] 

[8 8 8]       [3 3 9] 

[0 0 0]       [1 1 1] 

[2 2 2]       [3 3 3] 

[4 4 4]       [5 5 5] 

[6 6 6]       [7 7 7] 

[8 8 9]       [3 2 9] 
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Fig. 10.  Examples obtained after improving the image processing 

IV. OVERVIEW RESULTS AND CONCLUSIONS 

The first conclusion is about the way the whole system 
was integrated. Due to several platforms being used, we 
expected to encounter some effort to unify the robotized 
application. On the contrary, by seeing the system as an IoT 
one, the integration process got simple. The drawback is on 
the industrial equipment when this must be made as an IoT 
device. We can hope to appear a community involvement for 
developing IoT devices needed for the manufacturing 
environment, similar to the ROS community. 

The cloud solution for controlling a manufacturing 
system has the latency issue. Our experiments showed a 
delay between 0.4s – 2s for commands and the direct 
interaction between the IoT device and robot is around 0.3s. 
The remained delay can be from the IoT application and 
broker. This issue is to be further studied.  

The deep learning application developed to recognize 
digits from zero to nine in a real environment allowed us to 
understand several issues. Image processing and the 
activation function have a great importance, as well as the 
light, shadows and camera specifications. The learning 
process using the TensorFlow needed 32 seconds, meaning 
that for complex object recognition tasks it should be carried 
out on a proper cloud environment. Our future intention 
regards the application of reinforcement learning for a 
robotized system. 
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