
Robotized application based on

deep learning and Internet of Things

Carlos Pascal, Laura-Ofelia Raveica, and Doru Panescu

Department of Automatic Control and Applied Informatics

“Gheorghe Asachi” Technical University of Iași

Iași, Romania
{cpascal, raveica.laura, dorup}@ac.tuiasi.ro

Abstract— This paper presents a way to integrate an industrial

robot into Internet of Things and to use it with a deep learning

application. Besides of manufacturer’s restrictions, which usually

exist in an industrial scenario, an easy method to extend and merge

the sensorial and decisional systems for robots will be required as

part of Industry 4.0. Related to this, the proposed method couples

IBM Watson IoT cloud-based platform, a Node-RED cloud

application, a deep learning mechanism with TensorFlow (this

being applied for a computer vision case study), and an old

generation industrial robot. Several conclusions highlight the trade-

off of using IoT and deep learning solutions for a real

manufacturing environment.

Keywords— robotics, Internet of Things, deep learning,

computer vision, cloud infrastructure, neural networks

I. INTRODUCTION

Nowadays industrial applications are in continuous renewal
and between the technologies being involved one can
frequently note Internet of Things (IoT) [1], [2], deep
learning [3], cloud computing [4], computer vision systems,
and sensor networks. A common use of deep learning for
solving industrial tasks is to couple this method with
computer vision techniques [3]. This is the approach
considered in this paper, too. Though IoT is in its beginning
stage of industrial adoption, it is already valuable for testing
and validation of new functional modules. This is the case
treated in this research, which had two main goals: to
develop and test a deep learning module being linked to a
computer vision system, and to establish an interface for an
industrial robot based on IoT that should allow the
connection to cloud infrastructure.

 There are many researches in the IoT field. It is to notice
that the application of this paradigm in an industrial
environment determines many specific issues, so that now
the distinction is made through the notion of Industrial
Internet of Things (IIoT) [2], [5]. The overview presented in
[2] highlights the problems regarding connectivity in IIOT
and also the challenges for this solution. Besides the benefits
obtained with this new technology, the problems regarding
the security requirements must be discussed, too. In [5], the
underlined advantages of IIOT regard the way precision
machining can be achieved by the use of embedded sensors
and intelligent algorithms that can detect, in real time,
deviations from nominal values during the manufacturing
processes. A new paradigm is applied in [6], namely the so-

called edge computing, which means that computation is
done as much as possible close to the sensorial part and only
preprocessed information is transferred towards cloud
services. In this way, the obtained advantage is about
reducing communication load. This is a significant issue, due
to the great volume of data determined by sensors, resources
and products with embedded intelligence.

 Starting from the common case of robotic systems, which
operate in repetitive cycles with reduced adaptability (as it is
the case of the robotic environment we used in our previous
experiments [7]), the purpose was to extend the sensorial and
decisional subsystems. Having this in mind, our objective
was to get an entire system of the type “see, decide and act”,
which should be similar to the principles of agent-based
systems. In order to validate the proposed approach and
understand its specific issues, the problem of recognizing
digits from zero to nine in a real environment was adopted; it
has the advantage that some results regarding it exist in the
literature [8]. Image processing and the trained neuronal
network have great importance in this case, as well as the
light, shadows and camera specifications. The main issues
introduced through this paper refer to the connection of an
industrial robot with a deep learning module using an IoT
cloud platform, the comparison of learning performances
involved in the object recognition scenario, and utilization of
some image processing strategies based on OpenCV [9] to
improve the recognized rate.

 One way to apply deep learning is by means of
TensorFlow; this is an open source software library used for
numerical computation [10]. It was developed by engineers
at Google Brain to explore deep neural networks and
machine learning. The tool is flexible and can express a wide
variety of algorithms, such as learning and deduction
schemes for deep neural networks. It supports both Python
and C++ languages. The Python API is more extended and
its main advantage regards the way it can run on multiple
CPUs and GPUs. To view the created model we can use a
web platform called TensorBoard [11]. This allows us to
inspect the graph of neural network; one can track the
evolution of a tensor (a set of values organized in a
multidimensional array) over time through a histogram and
can graphically represent different desired characteristics,
such as the accuracy of model.

This paper is organized as follows. First, a solution to
integrate an industrial robot into an IoT cloud-based platform

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 646

is presented. After illustrating a simple cloud application
devoted to monitoring and controlling the robot, a deep
learning application is explained. The paper ends with some
results and conclusions.

II. IOT SOLUTION FOR A ROBOTIZED CELL

A. Motivation and the used manufacturing cell

 In order to extend the sensorial and decisional
subsystems as needed for the object recognition scenario, a
solution is required to easily integrate and establish the
communication between a data acquisition application, a
processing system, a learning module, decisional and
execution parts. The used manufacturing environment is
presented in Fig. 1 and includes: (1) HD webcam system
linked to (2) image processing application (described in
Section III) running on a laptop with an Intel Core i5-5200
processor, (3) a driver application running on a modest
computer that is connected to the SC4-plus controller for (4)
the robot IRB2400L.

Previously, we proposed a solution for the external
interaction with an ABB robot controller used in several
research projects [7], [12], [13]. Each time the main effort

1
2

4
3

Fig. 1. Manufacturing environment used with the IoT application

was to facilitate custom communication with other
applications, such as Matlab, Java, Python and C++, through
local and private networks. Other researchers have adopted
the Robot Operating System (ROS) for their robots in order
to interact with them [14]. This approach requires certain
options to be installed on the robot controller, some of them
being not compatible with older versions of robot controllers.
That is why this method is not applicable for our robot. A
proposed interaction method between (2) and (3) is obtained
via Watson IoT platform [15] without any local connection.

B. IoT system architecture

 The IoT communication solution is based on publish/
subscribe patterns, using a broker service and the MQTT
protocol over TCP/IP. Two primary types of actors are in the
system. IoT devices are embedded systems able to publish
their states/events and receive commands within existing
internet infrastructure through MQTT. IoT applications are
developed to receive device/devices information and to
optionally publish commands toward devices. The
interaction between IoT actors is carried out by the broker
service. When a device publishes something with a topic, the
broker forwards the message to all applications registered to
that topic. Similarly, a command is transmitted through the
broker from an application to a specific device having the
command registered. This architecture is illustrated in the
bottom part of Fig. 2. In our solution, the IBM cloud
infrastructure is used: Watson IoT as the broker service and
Node-RED as IoT cloud application for testing. IoT
integration of industrial equipment involves some
manufacturing constraints. Even if some devices are
connected to a local network, external interaction is limited
by the installed software (no support for MQTT protocol)
and/or by the private protocol provided by the manufacturer.
In our case, the SC4 plus robot controller has only one
solution supported by ABB, namely the Interlink service [16]
working with the Robot Application Protocol (RAP) [17].
This service is pulling the controller (> 200 ms) in order to
get states of controller, I/O channels, robot arm pose and
persistent variables of running program. It also supports several

ABB

controller

Robot Application Protocol

(RAP)
 RAP

Interlink

Service

TCP/IP

local

network

TCP/IP

IBM

Watson IoT

broker

IoT device

implementation (C#)

WebWare API

MQTT

Rapid

program

Cloud services

Other IoT devices

IoT applications

(matlab, python, java, ...)
IoT cloud

applications

IoT robot device

Fig. 2. IoT architecture including an industrial robot

647

commands: copy, load Rapid programs and run procedures,
change the persistent variables and the output channels.
Interlink service can be only used with a constrained
WebWare SDK [16]; this is developed for Windows,
supports Visual Basic and C#, needs window form
application, and has no further supports.

 The above issue is present to all industrial devices. For
instance, in the case of our educational manufacturing cell
[7], similar constraints appear for the machine tool, conveyor
and computer vision system. Our solution involved the
implementation of IoT device client to bridge the
communication in both ways: publishing the robot’s
status/events and receiving and forwarding commands to the
controller (see Fig. 2). This client has to be on the same
computer with the interlink service and it must have access
to the robot network and internet.

 In order to gather robot information, we defined several
topics for states: controller, program, motors, I/O, robot pose
and customer program variables. These are persistent
variables, being defined in the developed program loaded on
the robot. The states are changed by the Interlink service
when events are triggered, meaning that the IoT client is
connected to that events. For example, when the motion of
the robot is monitored, the IoT device is pulling the
controller and publishing pose data under the JSON format
(1) with the current_pose topic. The structure of data that
store a pose of any ABB robot is robtarget (2), where [x, y,
z] is the position of tool’s reference frame, and [q0, q1, q2,
q3] is the orientation given as quaternion.

{‘x’ = …, ‘y’ =…, ‘z’ =…,

’q0’=…,’q1’=…,’q2’=…,’q4’=….} (1)

robtarget p1 = [[x,y,z], [q0,q1,q2,q3],…] (2)

 Regarding the transmission of commands towards robot,
the IoT client has to publish the command with a type and
several parameters. We defined three command types: for

controller (on/off motors), for analogical and digital output
signals, and for programs (meaning the change of persistent
variables and run of procedures). For example, in order to
move the robot in a given position, the client application has
to publish a move_to command with parameters for the final
position (x, y, z). The command is received by the IoT robot
device; first, persistent variables indicated in received
parameters are updated on the robot controller and then the
corresponding procedure is carried out. About this, it is
important how persistent variables are chosen, so that to be
appropriate for the procedure to be run on robot controller.

C. A simple IoT cloud application

 Once the robot was integrated in IoT platform, it is
accessible for monitoring and control from the cloud
applications and also from other computers. In Fig. 3 a
cloud-based application with the Node-RED tool is
presented. The first goal was to monitor the robot motion and
to plot the robot positions. Thus, it is used an input node for
Watson IoT platform in order to receive events sent from
robot with the current position, and three chart nodes to plot
x, y and z axes. Figure 4 illustrates the data plotted in real-
time when the robot made three repetitive tasks; the sampling
period was set to 200 ms.

Fig. 3. Node-RED cloud application for monitoring and controlling an

industrial robot

Fig. 4. Monitoring the robot motion: x, y, z axes

648

 The second goal implied to send some commands, such
as close/open the gripper and to move to a given position.
For this, three output nodes are involved to publish
commands toward IoT platform and three input nodes are
acting as buttons. Furthermore, these three commands need
to be previously registered by the IoT device and
implemented consistently with the robot program. Codes 1
and 2 show the developed programs for the robot (using the
Rapid language, the one devoted to ABB robots [18]) and the
needed IoT device. When the MoveToXYZ command is
received by IoT device, the persistent variables are updated
and after that the corresponding procedure is executed.

Code 1. Example of robot program for customer commands

1.

2.

3.

4.
5.

6.

7.
8.

9.

10.
11.

12

PERS num x:=0, y:=0, z:=0; // external changeable variables

PROC MoveToXYZ()
 ConfL\Off;

 MoveL Offs(P10_Ref, x, y, z),v200,fine,Efector;
 ConfL\On;
ENDPROC

PROC OpenGripper()
 WaitTime 0.2;

 Set DO11_7;

 Reset DO11_8;
 WaitTime 0.2;

ENDPROC

Code 2. Example of IoT robot device code for customer commands

1

2

3
4

5

6
7

5

6

public void processCmd(string cmd, string format, string data){
 if (cmd.Equals("OpenGripper"))
 AbbControler.RunRapidProcedure(robot, cmd);
 if (cmd.Equals("MoveToXYZ")){

 JObject msg = JObject.Parse(data);
 AbbControler.SetRapidVar(robot, "x", msg.GetValue("x"));
 AbbControler.SetRapidVar(robot, "y", msg.GetValue("y"));
 AbbControler.SetRapidVar(robot, "z", msg.GetValue("z"));
 AbbControler.RunRapidProcedure(robot, cmd);}}

III. DEEP LEARNIG BASED OBJECT RECONGNITION

The considered robotized application applying Deep
learning has as scenario the carrying out of certain tasks by
an industrial robot in accordance with images received as
input data. Thus, the operator writes a number from zero to
nine on a paper, and the robot reacts by making one task
from a set of ten jobs in our experiments, the robot’s tasks
were to write the presented number (see Fig. 1). The scenario
can be extended to more complex tasks; one issue is about
collecting the dataset to properly train a neural network.

IoT client

Processing and decisional

Python application

IBM cloud

 IoT platform

IoT client

Industrial robot

Device

Webcam USB

Fig. 5. IoT based architecture

The IoT based architecture is presented in Fig. 5. This is
an instance of Fig. 2, where the processing and decisional
part is an IoT application and the IoT robot device achieves
the connection with the industrial robot. Data acquisition is
performed using a webcam, images being transmitted via
USB. The decision-making system (IoT application) is
developed in Python; it consists of the image processing with
the OpenCV library and a recognition algorithm that uses the
TensorFlow library.

A. The considered learning process

To be able to recognize the transmitted images, first, the
system must be trained with the learning dataset. Three
activation functions were considered to train the deep neural
network by TensorFlow: Softmax, Sigmoid, and ReLU. Each
of these brought different performance. The Softmax function
calculates the probability of each target class over all
possible target classes; in our case there are ten possible
classes. The Sigmoid function is used in binary classification
and is nonlinear. The ReLU (Rectified Linear Unit) is
inspired by biology and it is defined as the positive part of its
argument (3):

 f(z) = max(0,z) (3)

where z is the input variable of neuron. This function
provided a better learning of deep neural network than
Softmax and Sigmoid functions, as shown in the next section.

As a first phase, the learning process used an MNIST

(Modified National Institute of Standards and Technology)

[19] digit dataset divided into three categories: 55.000 items

of learning data, 10.000 test data and 5.000 validation data.

Each image is binary, with a size of 28x28 and has

associated a tag with the number from the picture (see Fig.

6). The MNIST dataset was useful, allowing us to determine

the best recognition percentage for each activation function

applied by the developed program. One must take into

account that the quality of images from the dataset greatly

influences the accuracy of the learning process. This

determines the need for real captured image to be

appropriately processed, considering light, shadows, camera

pose, and camera specifications.

Fig. 6. Digits representation in the MNIST dataset [19]

About this, image acquisition and processing are made

with OpenCV. Figure 7 illustrates the processing steps for a

captured image: gray scaling, thresholding, dilatation,

centralize and resize. The reasons of these steps are

highlighted in the next section.

649

a) b) c)

d) e)

Fig. 7. a) original image b) conversion to grayscale c) thresholding d)

dilatation e) centralize and resize

B. Performance analysis

The considered activation functions and processing steps
influence the quality of recognition. In this investigation, the
validation data are captured from the web camera and
MNIST validation data are no longer used. For each digit,
three different images are used (thus, our set includes 30
images) considering the influence of writing instrument,
light, angle and quality. Figure 8 shows the considered
samples for the digit 8. Moreover, the image processing
includes only resizing and thresholding (see Fig. 9).

When the Softmax function was used, the TensorFlow
built a neural network with a single layer of neurons and the
percentage of recognition was up to 60% (when MNIST data
validation are used, recognition percentage is up to 92%). As
Fig. 9 shows, the quality of image processing is low. We can
conclude that the difference in recognition of 30% appearing
between the real data and that from MNIST (see Table I) is
closely related to how image is processed. The Table I shows
in the last row which digits are partial recognized (a bolded

Fig. 8. Examples of images with digit 8

and underlined value is one being incorrectly recognized).
For instance, the digits 7, 8 and 9 are not recognized at all.

 By considering the Sigmoid function, a neural network
with five layers of neurons was built. The first layer has 10
neurons and this number is progressively increased to the
fifth layer with 200 neurons. On the same sample of 30
images, the percentage of recognized images reaches 70%
for those being captured by the camera and up to 95% for the
MNIST validation set. Table I shows that more digits are
recognized in each input set (at least one digit from each set).
When ReLU function was used, recognition percentage
increased to 83% for our images and to 96% for MNIST
dataset.

 To improve the recognition percentage for all three
activation functions, one had to increase the quality of image
processing. Images of digits from Fig. 9 differ a lot from
those of Fig. 7, due to the weak contrast between the sheet
and the drawn number; only simple binarization does not
bring the image to the needed quality. Furthermore, image
dilatation is introduced to enlarge the bright regions; it also
shrinks the dark regions to join the broken areas of the
number. There is a morphological closure that removes the
remaining dark colored spots and connects small carpets so
that dark gaps between the bright ones "close". Another
change in processing lies in the fact that image resizing at
28x28 takes place at the end of the process and not at the
beginning; this was done because it was seen from the tests
that resizing before binarization, dilatation, and centering
reduce image quality. After these improvements, better
results were obtained as presented in Fig. 10 (to be compared
with those of Fig.9).

 With these changes in image processing, we ran the
model again using the ReLU function, and we could see that
the percentage of recognition exceeds 90% (see Table I, the
ReLU 2 column).

Fig. 9. Results of resizing and thresholding the image from Fig. 8

TABLE I. LEARNING PERFORMANCE USING THREE ACTIVATION FUNCTIONS

Performance Softmax Sigmoid ReLU ReLU 2

MNIST image recognition 92% 95% 98% 98%

Real image recognition 53% - 60% 70% 83% 90%

[img1 img2 img3] with/
without recognized values

imgi – input image

[0 0 0] [2 1 1]

[2 2 2] [3 6 1]

[4 6 4] [5 5 5]

[8 6 6] [2 2 2]

[1 2 9] [3 3 3]

[0 0 0] [3 5 1]

[2 2 2] [3 3 1]

[4 4 9] [5 5 5]

[8 6 6] [2 7 7]

[8 8 9] [3 2 9]

[0 0 0] [1 1 1]

[2 2 2] [3 3 3]

[4 4 4] [5 5 5]

[8 6 6] [2 7 2]

[8 8 8] [3 3 9]

[0 0 0] [1 1 1]

[2 2 2] [3 3 3]

[4 4 4] [5 5 5]

[6 6 6] [7 7 7]

[8 8 9] [3 2 9]

650

Fig. 10. Examples obtained after improving the image processing

IV. OVERVIEW RESULTS AND CONCLUSIONS

The first conclusion is about the way the whole system
was integrated. Due to several platforms being used, we
expected to encounter some effort to unify the robotized
application. On the contrary, by seeing the system as an IoT
one, the integration process got simple. The drawback is on
the industrial equipment when this must be made as an IoT
device. We can hope to appear a community involvement for
developing IoT devices needed for the manufacturing
environment, similar to the ROS community.

The cloud solution for controlling a manufacturing
system has the latency issue. Our experiments showed a
delay between 0.4s – 2s for commands and the direct
interaction between the IoT device and robot is around 0.3s.
The remained delay can be from the IoT application and
broker. This issue is to be further studied.

The deep learning application developed to recognize
digits from zero to nine in a real environment allowed us to
understand several issues. Image processing and the
activation function have a great importance, as well as the
light, shadows and camera specifications. The learning
process using the TensorFlow needed 32 seconds, meaning
that for complex object recognition tasks it should be carried
out on a proper cloud environment. Our future intention
regards the application of reinforcement learning for a
robotized system.

REFERENCES

[1] P. Benardos, and G-C. Vosniakos, “Internet of Things and Industrial
Applications for Precision Machining”, Solid State Phenomena, vol.
261, pp. 440–447, 2017.

[2] S. Mumtaz, A Alsohaily, Z. Pang, A. Rayes, K.F. Tsang, and J.
Rodriguez, “Massive Internet of Things for industrial applications:
Addressing wireless IIoT connectivity challenges and ecosystem

fragmentation”, IEEE Industrial Electronics Magazine, vol. 11(1),
pp.28-33, 2017.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol.
521(7553), p. 436, 2015.

[4] D. Wu, D.W. Rosen, L. Wang and D. Schaefer, “Cloud-based design
and manufacturing: A new paradigm in digital manufacturing and
design innovation”, Computer-Aided Design, vol. 59, pp.1-14. 2015.

[5] M. Luvisotto, F. Tramarin, L. Vangelista, and S. Vitturi, “On the use
of LoRaWAN for Indoor Industrial IoT Applications”, Wireless
Communication and Mobile Computing, vol. 2018, 2018.

[6] S. Raileanu, F. Aton, T. Borangiu, O. Morariu, I. Iabob, “An
experimental study on the integration of embedded devices into
private manufacturing cloud infrastructures”, 8th Workshop on Service
Orientation in Holonic and Multi-Agent Manufacturing, June 11-12,
Bergamo, Italy, 2018 (in press).

[7] D. Panescu, C. Pascal, and R.M. Olaeru, “A rule-based approach for a
multi-robot application”, 19th International Conference on System
Theory, Control and Computing (ICSTCC), pp. 75-80, IEEE, 2015.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
vol. 86(11), pp.2278-2324, 1998.

[9] OpenCV ,”Open Source Computer Vision”, https://opencv.org/

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean., M.
Devin, S. Ghemawat, G. Irving, M. Isard and M. Kudlur,
“TensorFlow: A System for Large-Scale Machine Learning”, in
OSDI, vol. 16, pp. 265-283, 2016.

[11] L. Rampasek, and A. Goldenberg, “Tensorflow: Biology’s gateway to
deep learning?”, Cell systems, vol. 2(1), pp.12-14, 2016.

[12] D. Panescu, and C. Pascal, “Holonic coordination obtained by joining
the contract net protocol with constraint satisfaction”, Computers in
Industry, vol. 81, pp.36-46, 2016.

[13] A. Burlacu, C. Copot, A. Panainte, C. Pascal and C. Lazar, “Real-time
Image based Visual Servoing Architecture for Manipulator Robots”,
in VISAPP, pp. 502-510, 2011.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A.Y. Ng, “ROS: an open-source Robot Operating
System”. In ICRA workshop on open source software, vol. 3 (2), p.
5, 2009.

[15] IBM IoT platform,”Architecture of the Watson IoT Platform”
https://console.bluemix.net/docs/services/IoT/iotplatform_overview.ht
m, (accessed in 2018)

[16] ***, WebWare SDK User’s Guide, ABB Flexible Automation,
Sweden, 2000.

[17] ***, RAP. Service Protocol Definition, ABB Flexible Automation,
Sweden, 1996.

[18] ***, ABB RAPID, Technical Reference Manual - RAPID
Instructions, Functions and Data types, 3HAC050917-001, 2014.

[19] Y. LeCun, C. Cortes, and C.J.C. Burges, “The MNIST database of
handwritten digits”, http://yann.lecun.com/exdb/mnist/, (accessed in
2018).

651

